qianzi3 发表于 2009-10-28 20:03

室内色彩4

第二章 色彩的生理理论
第一节 人眼的生理与色彩视觉
所有的色彩视觉(包括色相、明度、纯度)都是建立在人的视觉器官的生理基础上的,所以研究色彩还必须了解视觉器官的生理特征及其功能。
1.人眼的构造及功能
眼球:人眼的形状像一个小球,通常称为眼球,眼球内具有特殊的折光系统,使进入眼内的可见光汇聚在视网膜上。视网膜上含有感光的视杆细胞和视锥细胞,这些感光细胞把接受到的色光信号传到神经节细胞,再由视神经传到大脑皮层枕叶视觉神经中枢,产生色感。眼球壁有三层膜组成。外层是坚韧
的囊壳,保护眼睛的内部,称为纤维膜,它的前1/6为角膜,后5/6为白色不透明的巩膜,中层称葡萄膜(或血素层、血管层),颜色像黑紫葡萄,由前向后分为三部分:虹膜、睫状体和脉络膜。内层为视网膜,简称网膜。(图20)
角膜:眼球最前端是透明的角膜,它是平均折射率为1.336的透明体,俗称眼白,微向前突出,曲率半径前表面约7.7毫米,后表面约6.8毫米,光由这里折射进入眼球而成像。
虹膜:在角膜后面呈环形围绕瞳孔,也叫彩帘。虹膜内有两种肌肉控制瞳孔的大小:缩孔肌(即环形肌)收缩时瞳孔缩小;放孔肌(即辐射肌)收缩时则瞳孔放大,其作用如同照相机的自动光圈装置,而瞳孔的作用好似光圈。它的大小控制一般是不自觉的,光弱时大,光强时小。
晶状体:晶状体在眼睛正面中央,光线投射进来以后,经过它的折射传给视网膜。所谓近视眼、远视眼、老花眼以及各种色彩、形态的视觉或错觉,大部分都是由于水晶体的伸缩作用所引起。它像一种能自动调节焦距的凸透镜一样。晶状体含黄色素,随年龄的增加而增加,它影响对色彩的视觉。
玻璃液体:把眼球分为前后两房,前房充满透明的水状液体,后房则是浓玻璃体。外来的光线,必须顺序经过角膜、水状液体、晶状体、玻璃体,然后才能到达网膜。它们均带有色素,随环境和年龄而变化。
黄斑与盲点:黄斑是网膜中感觉最特殊的部分,稍呈黄色。色觉之所以有很大的个人差异与黄斑是有关系的,位置刚好在通过瞳孔视轴所指的地方,即视锥细胞和视杆细胞最集中的所在,是视觉最敏锐的地方。我们看到物体最清楚时,就是因为影像刚好投射到黄斑上的缘故,黄斑下面有盲点,虽然是神经集中的部位,但缺少视觉细胞,不能看到物体影像。
视网膜:视网膜是视觉接收器的所在,它本身也是一个复杂的神经中心。眼睛的感觉为网膜中的视杆细胞和视锥细胞所致。视杆细胞能够感受弱光的刺激,但不能分辨颜色,视锥细胞在强光下反应灵敏,具有辩别颜色的本领。在中央凹处之内,只有视锥细胞,很少或没有视杆细胞。在网膜边缘,*近眼球前方各处,有许多视杆细胞,而视锥细胞很少。某些动物(如鸡)因视杆细胞较少,所以在微光下,它们的视觉很差,成为夜盲。也有些动物(如猫和猫头鹰)因视杆细胞很多,所以能在夜间活动。
视觉过程:入射光到达视网膜之前,是主要折射在角膜和晶状体的两个面上的。眼睛内部各处的距离都固定不变,只有晶状体可以突出外张,所以有聚像于网膜上的功能,这完全*晶状体曲率的调整。如果起调节作用的睫状肌处于松弛状态,从远处射来的光线经折射后,恰好自动聚焦在网膜的感光细胞上。假如眼睛有病态,聚焦就落在较前方或较后方,落在网膜前面叫近视眼,落在网膜后方叫远视眼。正常人眼在观察近处物体时,可调节收缩睫状肌,使晶状体突出一些,这样由近处物体射来的光线,经晶状体凸出面的折射后,仍然可以汇集在视网膜上成像。由于凸出的曲率有限度,因而过于*近眼睛的物体,它的成像不能落在视网膜上。水晶体的弹PPP随年龄的增长而减小,调节的本领也随着年龄的增长而降低,因此发生老年PPP远视。要使近处的物体落在网膜上,可用聚光镜将远处的光线收拢,方能使聚焦恰当地落到视网膜上,达到正常视觉。
视觉与年龄:视觉发生于出世后约一个月左右,大致一年以后即可对所有色彩具备完全感受能力。随年龄的增长(大约30岁开始)其效力日趋衰退(50岁以后特别明显)。
2.色彩的视觉理论
赫尔姆霍兹的三色学说认为人眼视网膜的视锥细胞含有红、绿、蓝三种感光色素。当单色光或各种混合色光投射到视网膜上时,三种感光色素的视锥细胞不同程度地受到刺激,经过大脑综合而产生色彩感觉。如:当含红色素的视锥细胞兴奋时,其他两种视锥细胞相对处于抑制状态,便产生红色感觉;当含绿色素的视锥细胞兴奋时,其他两种视锥细胞相对处于抑制状态,便产生绿色感觉;如果含红、绿两种视锥细胞同时兴奋,而含蓝色视锥细胞处于抑制状态,此时产生黄色感觉;三种细胞同时兴奋时,则产生白色感觉;三种细胞同时抑制则产生黑色感觉;三种细胞不同程度地受到刺激时,则产生红、橙、黄、绿、青、蓝、紫等色感。如果人眼缺乏某种感光细胞,或某种感光的视锥细胞功能不正常时,就会产生色盲或色弱。
赫林的对立色彩学说也叫四色学说。1878年他观察到色彩现象总是成对发生关系,因而认定视网膜中有三对视素:白—黑视素、红—绿视素、黄—蓝视素。这三对视素的代谢作用包括建设(同化)和破坏(异化)两种对立的过程,光的刺激破坏白—黑视素,引起神经冲动产生白色感觉。无光刺激时,白—黑视素便重新建设起来,所引起的神经冲动产生黑色感觉。对红—绿视素,红光起破坏作用,绿光起建设作用。对黄蓝视素,黄光起破坏作用,蓝光起建设作用。因为各种颜色都有一定的明度,即含有白色,所以每一颜色不仅影响其本身视素的活动,而且也影响白—黑视素活动。根据赫林的学说,三种视素的对立过程的组合产生各种颜色感觉和各种颜色的混合现象。
第三种说法是:在人眼视网膜的视锥细胞中有一种感光蛋白和三种感色蛋白,光照感光蛋白使其破裂,产生神经脉冲传到大脑皮层使我们有了光的感觉,这样就完成一个视觉过程。三种感色蛋白分别吸收红、绿、紫的色光,使其感色蛋白破裂产生脉冲传到大脑皮层,使我们感到某种颜色。这种蛋白破裂之后,需要在1/16秒之内再重新合成,有的破坏了之后不能及时合成,使其感觉迟钝,或感觉其他颜色,这就是某种色的色弱。有的人根本看不到某种色,这就是说他缺少某种感色蛋白,这就是色盲。色弱的人,对物体色知觉的第一印象是正确的,但由于他对于某种色光刺激后,破裂的感色蛋白不能及时合成再去接受继续刺激,继续产生色知觉。这时处于它相对应的那种蛋白十分活跃,因而使他产生一种对应色的色知觉。所以色弱的人迟钝的色知觉总是该色的补色。 第二节 色彩的错觉与幻觉
物体是客观存在的,但视觉现象并非完全是客观存在,而在很大程度上是主观的东西在起作用。当人的大脑皮层对外界刺激物进行分析、综合发生困难时就会造成错觉;当前知觉与过去经验发生矛盾时,或者思维推理出现错误时就会引起幻觉。色彩的错觉与幻觉会出现一种难以想象的奇妙变化。美术工作者在从事美术实践时常常会碰到以下几种情况:
1.视觉后像 当视觉作用停止之后,感觉并不立刻消失,这种现象叫视觉后像。
这种后像一般有两种:
a、正后像:如果你在黑暗的深夜,先看一盏明亮的灯,然后闭上眼睛,那么在黑暗中就会出现那盏灯的影像,这种叫正后像。日光灯的灯光是闪动的,它的频率大约是100次/秒,由于眼睛的正后像作用我们并没有观察出来。PPP也是利用这个原理,所以我们才能看到银幕上物体的运动是连贯的。
b、负后像:正后像是神经在尚未完成工作时引起的。负后像是神经疲劳过度所引起的,因此其反应与正后像相反。当你在阳光下写生一朵鲜红的花,观察良久,然后迅速将视线移到白
[注例]:斑马的保护色与其他动物的保护色不同,其他动物一般将自身的色彩尽量接近所生长的环境色,使对方难以辨认。而斑马则采用同时对比时的错视和视觉后像效果来保护自己。原理是:当斑马在快速飞奔,使追逐捕捉它的狮子在观看时,由于同时对比的错视作用,身体的前一个视觉印象还没有消失时,身体已经飞奔出,使狮子不能正确判断斑马的位置,所以往往捕空。这是它保护自身的方法。
纸上,这时你会发现白纸上有一朵与那朵红花形状相同的绿花。这种现象在生理上解释为:当人们观看红色光持久时红色视锥细胞产生疲劳,要保持这种不变的红色印象,在视网膜上映有红花的这个区域的视锥细胞的感红蛋白,只有大量红光才能继续激起它们产生红色信息。当你将视线迅速移到白纸上,白纸上反映到视网膜上原红花影像的那个区域中的白光中所含的那部分红光,其量不能激起这个区域疲劳过度的红色感色蛋白的迅速合成,也就是不能激起那个区域红色视锥细胞产生红色信息,而恰恰在这时,原在这个区域一直处于抑制状态的那部分绿色视锥细胞在仅有白光中的那部分绿色光的刺激下格外活跃,所以这个区域给人的印象是绿色的。当然这种现象瞬间即消失了。这种负后像色彩错觉一般都是补色关系的,如:红—绿、黄—紫、橙—青紫。黑与白也同样会产生这样的现象,其原理相同。
页: [1]
查看完整版本: 室内色彩4

新媒体课大宅课